Tom S. Bertalan

RESEARCH SOFTWARE ENGINEER · BIOREACTOR CONTROLS · NEURAL NETWORKS FOR NONLINEAR DYNAMICS

Boston, MA

🛛 (256) 613-3760 | 🖉 Tom@TomBertalan.com | 🎢 TomSB.net | 🖸 TSBertalan | 🛅 Tom-Bertalan-00764640

Machine learning and dynamical systems researcher specialized in neural system identification and unsupervised representations. Proficient in handling high-dimensional time-series data for both offline parameter optimization and online execution.

PROFESSIONAL EXPERIENCE AND RESEARCH AREAS.

University of Massachusetts

RESEARCH SOFTWARE ENGINEER

Model Predictive Control of CHO Bioreactor

- Design and administer virtualization, certificates, remote access, and OPC-UA communication for bioreactor distributed controls.
- Lead the rewrite of Java-based event-driven pump control logic, including regular review of junior engineers' work.
- Collect targeted experimental data from a 3-liter bioreactor, characterizing dynamics and responses to control inputs.
- Supervise the implementation of more rigorous simulation methods for a SBML-encoded bioreactor digital twin.
- Develop an optimal online model-predictive controller in Aspen DMC to maximize economic factors.

Johns Hopkins University

POSTDOCTORAL FELLOW

Neural Differential Equations and Time-Series

- Advanced SotA for neural DEs for time series, including CNNs for PDEs; conceived a novel loss function for Hamiltonian systems.
- Cut RNN inference burn-in from 25 to 5 samples using manifold learning.
- Derived custom gradients for nets with constraints; promoted theory on error scaling laws; applications in biomanufacturing.
- Parallelized neural PDE solution sensitivity analysis using SLURM on GPU cluster.

• Modeling and Experimental Design for CHO Metabolism

- Led a team of biophysics and ML experts in creating a suite of Python/MATLAB simulation and data processing tools.
- Created a GUI for Bayesian experimental design; mentored team members on its use and maintenance.

Robotic Perception and Control

- Developed a variational autoencoder for end-to-end robotic localization.
- Trained a U-net on both open and custom datasets for real-time (>10hz) on-board semantic segmentation of drivable space.
- Inferred depth and semantic segmentation in simulation, using pre-trained transformer networks.
- Profiled depth/segmentation pipeline to ensure pure-GPU inference for real-time inference.

• Machine Learning Service Deployment and Administration

- Provisioned a local LLAMA2 inference server over VPN for diverse zero-shot microservices, including document renaming, topic extraction, and categorization.
- Automated conversion of seminar announcements to ICS files via OpenAI API, including curation of a 19.7k-word fine-tuning dataset.
- Administered lab GPU server for maximum uptime and ease of access for multiple concurrent users.
- Wrote specifications and solicited bids for an upcoming multi-GPU training server destined for datacenter colocation.

The Massachusetts Institute of Technology

POSTDOCTORAL ASSOCIATE

Autonomous Vehicle Design and Pathfinding

- Developed a model AV with firmware-level speed sensing and control commanded by checksummed bus communications.
- Designed a jerk-minimizing path planner capable of planing up to two lane switches ahead at 47 mph.
- Leveraged Ipopt and CppAD to push a model-predictive path follower to a latency of 67 ms in simulation.
- Taught summer courses on OpenCV, ROS, and CNNs for lane detection, path following, and traffic sign recognition.
- Wrote wrapper APIs for using video games as robotic simulations.
- Detected dashcam obstacles via windowed SVM.

Nonlinear dynamics in neuroscience

- Wrote object-oriented library for fine- and coarse-grained simulation of neuronal dynamics.
- Analyzed bifurcation and resonance behavior of a mammalian circadian rhythm model.
- Played a key role in acquiring a \$1.8M grant for an industry-academic partnership.

Princeton University

NSF Research Assistant

Built a rover for particle-filter SLAM with LIDAR using Gazebo and ROS. Created a custom library for visualizing OpenCV pipelines and pruning of computational graphs at execution time. Simulated thousands of neurons in vectorized Numpy and MATLAB, and social agents in OpenMP-accelerated C++.

Cambridge, MA

3/2018-2/2020

Baltimore, MD

2/2020-1/2024

Lowell, MA

1/2024-Present

Princeton, NJ 9/2012-3/2018

The University of Alabama

Student Research Assistant

Created a 10-node Beowulf cluster in PHP, explored CUDA for PDE acceleration, and developed a LAMP-based social network. Simulated hierarchy formation in social animals as input to wet-lab experiments. Authored a multigrid subsurface-flow solver with CUDA acceleration.

SKILLS

Libraries, frameworks, & tools

- Python/C++/Java
- NumPy+SciPy+Matplotlib
- Pytorch/TensorFlow/Keras
- Linux, shell scripting, and git
- VSCode/Eclipse+PyDev
- Aspen DMC3 Controls
- OPC-UA, MODBUS/serial, and ROS

Areas of Expertise and Training

- Nonlinear dynamics of time series data
- Deep learning and ML
- Dimension reduction and representation learning

Awards

- Probabilistic modeling and theory
- Computer vision
- Research presentation and dissemination
- Trainee and peer mentoring

Other Skills and Interests

- Home automation with Arduino, Raspberry Pi, and 3D printing
- Solo and orchestral violin performance
- · Windsurfing and small-boat sailing

• Princeton Program in Plasma Science and Technology re-

 National Science Foundation research fellowship • William R. Schowalter fund for scholarly conferences

· University honors program and president's list • $\Phi H\Sigma$, ΩXE , and $TB\Pi$ honor societies

search and academic fellowship

National merit finalist scholarship

EDUCATION & TRAINING

Institutions

 Johns Hopkins University 	2020 - 2024
Postdoctoral Fellow	Che. & Bio. Eng.
• The Massachusetts Institute of Technology 2018 - 2020	
Postdoctoral Associate	Mech. Engr.
 Princeton University 	2012 - 2018
NSF Research Fellow	PhD & MA, Che. & Bio. Eng.
 The University of Alabama 	2008 - 2012
Churchent Deservels Assistant DC Ch	· O Die Eren Minerie Math

Student Research Assistant BS Che. & Bio. Eng.; Minor in Math

Teaching

- Volunteered in a recurring summer course for high-school seniors and freshmen on employing ROS, OpenCV, and CNNs for lane detection and traffic sign recognition.
- Supervised operations and measurment activities in junior Chemical & Biological Engineering practicum.
- Lectured, held office hours, and graded assignments in senior differential equations course.

SELECTED PUBLICATIONS

Transformations establishing equivalence across neural networks: when have two networks learned the same task? Tom Bertalan, F. Dietrich, I. Kevrekidis	2024 Chaos
Implementation and (Inverse Modified) Error Analysis for implicitly-templated ODE nets	2024
A. Zhu, B. Zhu, <u>Tom Bertalan</u> , Y. Tang, I. Kevrekidis	SIAMDS
Data-driven and Physics Informed Modelling of Chinese Hamster Ovary (CHO) Cell Bioreactors	2024
T. Cui, <u>Tom Bertalan</u> , N. Ndahiro, P. Khare, M. Betenbaugh, C. Maranas, I. Kevrekidis	Comp. & Chem. Engr.
Certified Invertibility in Neural Networks via Mixed-Integer Programming	2023
T. Cui, <u>Tom Bertalan</u> , G. Pappas, M. Morari, I. Kevrekidis, M. Fazlyab	L4DC 2023 — PMLR
Learning emergent PDEs in a learned emergent space	2022
F. Kemeth, <u>Tom Bertalan</u> , T. Thiem, S. Moon, C. Laing, I. Kevrekidis	Nature Comm.
Initializing LSTM internal states via manifold learning	2021
F. Kemeth, <u>Tom Bertalan</u> , N. Evangelou, T. Cui, S. Malani, I. Kevrekidis	Chaos
Local conformal autoencoder for standardized data coordinates	2020
E. Peterfreund, O. Lindenbaum, F. Dietrich, <u>Tom Bertalan</u> , M. Gavish, I. Kevrekidis, R. Coifman	PNAS
On Learning Hamiltonian Systems from Data	2019
<u>Tom Bertalan</u> , F. Dietrich, Igor Mezic, and I. Kevrekidis	Chaos

PUBLICATIONS_____

Integration of Bayesian Optimization and Solution Thermodynamics to Optimize Media Design	
for Mammalian Biomanufacturing	In Press
Nelson Ndahiro, Edward Ma, <u>Tom Bertalan</u> , Marc Donohue, Yannis Kevrekidis, and Michael Betenbaugh	iScience
Machine Learning Approaches to Problem Well-Posedness	
<u>Tom Bertalan</u> , G. Kevrekidis, E. Rebrova, S. Mishra, I. Kevrekidis	In Preparation
Data-driven and Physics Informed Modelling of Chinese Hamster Ovary (CHO) Cell Bioreactors	2024
T. Cui, <u>Tom Bertalan</u> , N. Ndahiro, P. Khare, M. Betenbaugh, C. Maranas, I. Kevrekidis	Comp. & Chem. Engr.
Implementation and (Inverse Modified) Error Analysis for implicitly-templated ODE nets	2024
A. Zhu, B. Zhu, <u>Tom Bertalan</u> , Y. Tang, I. Kevrekidis	SIAMDS
Transformations establishing equivalence across neural networks:	2024
when have two networks learned the same task?	2024 Chaos
Tom Bertalan, F. Dietrich, I. Kevrekidis	Chuos
Certified Invertibility in Neural Networks via Mixed-Integer Programming	2023
T. Cui, <u>Tom Bertalan</u> , G. Pappas, M. Morari, I. Kevrekidis, M. Fazlyab	L4DC 2023 — PMLR
Some of the variables, some of the parameters, some of the times, with some things known:	2023
Identification with partial information	Comp. & Chem. Engr.
Saurabh Malani, <u>Tom Bertalan</u> , T. Cui, M. Betenbaugh, J. Avalos, I. Kevrekidis	1 5
Learning effective stochastic differential equations from microscopic simulations: linking	2022
stochastic numerics to deep learning	2023 Chaos
F. Dietrich, A. Makeev, G. Kevrekidis, N. Evangelou, <u>Tom Bertalan</u> , S. Reich, I. Kevrekidis	
Learning emergent PDEs in a learned emergent space	2022
F. Kemeth, <u>Tom Bertalan</u> , T. Thiem, S. Moon, C. Laing, I. Kevrekidis	Nature Comm.
Personalized Algorithm Generation: A Case Study in Meta-Learning ODE Integrators	2022
Y. Guo, F. Dietrich, <u>Tom Bertalan</u> , D. Doncevic, M. Dahmen, I. Kevrekidis, Q. Li	SIAM J. Sci. Comp.
Initializing LSTM internal states via manifold learning	2021
F. Kemeth, <u>Tom Bertalan</u> , N. Evangelou, T. Cui, S. Malani, I. Kevrekidis	Chaos
Development of closures for coarse-scale modeling of multiphase and free surface flows using	2024
machine learning	2021 APS Bulletin
C. Linares, <u>Tom Bertalan</u> , E. Koronaki, Jicai Lu, G. Tryggvason, I. Kevrekidis	
Global and local reduced models for interacting, heterogeneous agents	2021
T. Thiem, F. Kemeth, <u>Tom Bertalan</u> , Carlo Liang, I. Kevrekidis	Chaos
Local conformal autoencoder for standardized data coordinates	2020
E. Peterfreund, O. Lindenbaum, F. Dietrich, <u>Tom Bertalan</u> , M. Gavish, I. Kevrekidis, R. Coifman	PNAS
Emergent spaces for coupled oscillators	2020
T. Thiem, M. Kooshkbaghi, <u>Tom Bertalan</u> , Carol Laing, I. Kevrekidis	Front. in Comp. Neuro.
On Learning Hamiltonian Systems from Data	2019
Tom Bertalan, F. Dietrich, Igor Mezic, and I. Kevrekidis	Chaos
An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning	2017
F. Kemeth, Sindre Haugland, F. Dietrich, <u>Tom Bertalan</u> , Kevin Höhlein, Q. Li,	IEEE Access
Erik Bollt, Ronen Talmon, Katharina Krischer, and I. Kevrekidis	
Coarse-grained descriptions of dynamics for networks with both intrinsic and structural het- erogeneities	2017
<u>Tom Bertalan</u> , W. Wu, C. Laing, C. William Gear, and I. Kevrekidis.	Front. in Comp. Neuro.
Dimension reduction in heterogeneous neural networks: Generalized Polynomial Chaos (gPC)	
and ANalysis-Of-VAriance (ANOVA)	2016
M. Choi, <u>Tom Bertalan</u> , C. Laing, and I. Kevrekidis.	Euro. Phys. J., Special Topics
OpenMG: a new multigrid implementation in Python	2014
Tom Bertalan, A. Islam, R. Sidje, and E. Carlson	Num. Lin. Alg. with App.

PRESENTATIONS_____

Symbolic regression and modular neural differential equations	2024
for bioprocess engineering and robotics	2024 MLDS 4 (poster)
<u>Tom Bertalan</u> , Jaeweon Lee, Zhao Wang, Seongkyu Yoon, I. Kevrekidis	
Certified Invertibility in Neural Networks via Mixed-Integer Programming	2023
T. Cui, <u>Tom Bertalan</u> , G. Pappas, M. Morari, I. Kevrekidis, M. Fazlyab	Learning for Dyn. Sys.
Coarse-grained and emergent distributed-parameter systems from data	2021
Hassan Arbabi, F. Kemeth, <u>Tom Bertalan</u> , I. Kevrekidis	American Control Conf.
Data-driven model reduction and discovery	2020
T. Thiem, <u>Tom Bertalan</u> , F. Kemeth, Yorgos Psarellis, I. Kevrekidis	AIChE
Dynamical-systems-guided learning of PDEs from data	2020
Hassan Arbabi, <u>Tom Bertalan</u> , A. Roberts, I. Kevrekidis	AIChE
On the data-driven discovery and calibration of closures	2020
S. Lee, Yorgos Psarellis, C. Siettos, <u>Tom Bertalan</u> , D. Amchin, T. Bhattacharjee, S. Datta, I. Kevrekidis	AIChE
Connections between residual networks and explicit numerical integrators, and applications to	
identification of noninvertible dynamical systems	2020 AIChE
T. Cui, <u>Tom Bertalan</u> , Yorgos Psarellis, I. Kevrekidis	/ iiCile
Neural network approach to reduced order modeling of multiphase flows	2020
C. Linares, <u>Tom Bertalan</u> , S. Lee, J. Lu, G. Tryggvason, I. Kevrekidis	APS Div. of Fluid Dyn.
PDE+PINN: Learning and Solving a PDE at the Same Time	2020
<u>Tom Bertalan</u> , F. Kemeth, T. Cui, I. Kevrekidis	AIChE
Learning Partial Differential Equations from Discrete Space Time Data: Convolutional and Re-	2019
current Networks, and Their Relations to Traditional Numerical Methods	AIChE
<u>Tom Bertalan</u> , F. Dietrich, T. Thiem, R. Farber, I. Kevrekidis, A. Roberts	
Recurrent Neural Networks, Numerical Integrators and Nonlinear System Identification	2018
<u>Tom Bertalan</u> , R. Farber, T. Thiem, F. Dietrich, I. Kevrekidis	AIChE
Coarse-Scale PDEs from Microscopic Observations Via Machine Learning	2019
S. Lee, M. Kooshkbaghi, C. Siettos, <u>Tom Bertalan</u> , and I. Kevrekidis	AIChE
When Have Two Networks Learned the Same Task? Data-Driven Transformations between Sys-	2019
tem Representations	AIChE
<u>Tom Bertalan</u> , F. Dietrich, T. Thiem, I. Kevrekidis	
Coarse modeling of circadian rhythms in heterogeneous neural networks Tom Bertalan, C. William Gear, Yannis G. Kevrekidis, M. Henson, E. Herzog, and C. Laing	3017; 2016 Dyn. Days 2017; AIChE
Coarse-graining of heterogeneous neural dynamics Tom Bertalan, M. Choi, C. Laing, I. Kevrekidis	2015 AIChE
Heterogeneity and reduction for complex network dynamics I. Kevrekidis, A. Holiday, <u>Tom Bertalan</u> , and C. Laing	2014 AIChE
Coarse-graining Network Dynamics	
A. Holiday and Tom Bertalan	2013 Network Front.
nSpyres: an open-source, Python-based framework for simulation of flow through porous me-	
dia	2012
E. Carlson, A. Islam, F. Dumkwu, and <u>Tom Bertalan</u>	Interpore 2012
OpenMG: a new multigrid implementation in Python	2012
Tom Bertalan, A. Islam, R. Sidje, and E. Carlson	Proc. 11 th Python in Sci. Conf.
ESIM: a framework for simulation of dominance hierarchy formation in small animal groups	2012
Tom Bertalan and R. Earley	UA Hon. Undergr. Res. Conf.
An open-source computing cluster for virtual experiments with variable parameters	2011
Tom Bertalan and E. Carlson	UA Hon. Undergr. Res. Conf.